228 research outputs found

    Collapsing high-end categories of comorbidity may yield misleading results

    Get PDF
    Adequate control of comorbidity has long been recognized as a critical challenge in clinical epidemiology. Comorbidity scales reduce information about coexistent disease to a single index that is easy to comprehend and statistically efficient. These are the main advantages of an index over incorporating each disease into an analysis as an individual variable. Many study populations have a low prevalence of subjects with high comorbidity scores, so it is common to combine subjects with some score above a threshold into a single open-ended category. This paper examines the impact of collapsing comorbidity scores into these categories. It shows analytically and by synthetic example that collapsing the high-end categories of a comorbidity scale changes the pattern of effect of comorbidity. Furthermore, collapsing the high-end categories biases analyses that control for comorbidity as a confounder or analyze modification of an exposure’s effect by comorbidity. Each of these results specific to comorbidity scoring derives from more general epidemiologic principles. The appeal of collapsing categories to facilitate interpretation and statistical analysis may be offset by misleading results. Analysts should assure the uniformity of outcome risk in collapsed categories, informed by judgment and possibly statistical testing, or use analytic methods, such as restriction or spline regression, which can achieve similar goals without sacrificing the validity of results

    Bias analysis applied to Agricultural Health Study publications to estimate non-random sources of uncertainty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error.</p> <p>Methods</p> <p>For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset.</p> <p>Results</p> <p>The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval.</p> <p>Conclusion</p> <p>Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is likely to lead to overconfidence regarding the potential for causal associations, whereas the former safeguards against such overinterpretations. Furthermore, such analyses, once programmed, allow rapid implementation of alternative assignments of probability distributions to the bias parameters, so elevate the plane of discussion regarding study bias from characterizing studies as "valid" or "invalid" to a critical and quantitative discussion of sources of uncertainty.</p

    Specifying Exposure Classification Parameters for Sensitivity Analysis: Family Breast Cancer History

    Get PDF
    One of the challenges to implementing sensitivity analysis for exposure misclassification is the process of specifying the classification proportions (eg, sensitivity and specificity). The specification of these assignments is guided by three sources of information: estimates from validation studies, expert judgment, and numerical constraints given the data. The purpose of this teaching paper is to describe the process of using validation data and expert judgment to adjust a breast cancer odds ratio for misclassification of family breast cancer history. The parameterization of various point estimates and prior distributions for sensitivity and specificity were guided by external validation data and expert judgment. We used both nonprobabilistic and probabilistic sensitivity analyses to investigate the dependence of the odds ratio estimate on the classification error. With our assumptions, a wider range of odds ratios adjusted for family breast cancer history misclassification resulted than portrayed in the conventional frequentist confidence interval.Children's Cancer Research Fund, Minneapolis, MN, US

    Glyphosate Results Revisited

    Get PDF

    Kinetic evaluation of human cloned coproporphyrinogen oxidase using a ring isomer of the natural substrate

    Get PDF
    Background: The enzyme coproporphyrinogen oxidase (copro\u27gen oxidase) converts coproporphyrinogen-Ill (GIII) to protoporphyrinogen-IX via an intermediary monovinyl porphyrinogen. The A ring isomer coproporphyrinogen-IV (C-IV) has previously been shown to be a substrate for copro\u27gen oxidase derived from avian erythrocytes. In contrast to the authentic substrate (GIII) where only a small amount of the monovinyl intermediate is detected, C-IV gives rise to a monovinyl intermediate that accumulates before being converted to an isomer of protoporphyrinogen-IX. No kinetic studies have been carried out using the purified human copro\u27gen oxidase to evaluate its ability to process both the authentic substrate as well as analogs. Material/Methods: Therefore, purified, cloned human copro\u27gen oxidase was incubated with GIII or C-IV at 37 degrees C with various substrate concentrations (from 0.005 mu M to 3.5 mu M). The Km (an indication of molecular recognition) and Kcat (turnover number) values were determined. Results: The Km value for total product formation was about the same with either C-III or C-IV indicating the same molecular recognition. However, the catalytic efficiency (Kcat/Km) of the enzyme for total product formation was not more than two fold higher using GIII relative to C-IV. Conclusions: Since the Km values are about the same for either substrate and the total Kcat/Km values are within two fold of each other, this could correlate with the increase of severity of porphyrias with monovinyl accumulation. The ability of the increased levels of C-IV to compete with the authentic substrate has important implications for clinical porphyrias

    Departure from multiplicative interaction for catechol-O-methyltransferase genotype and active/passive exposure to tobacco smoke among women with breast cancer

    Get PDF
    BACKGROUND: Women with homozygous polymorphic alleles of catechol-O-methyltransferase (COMT-LL) metabolize 2-hydroxylated estradiol, a suspected anticarcinogenic metabolite of estrogen, at a four-fold lower rate than women with no polymorphic alleles (COMT-HH) or heterozygous women (COMT-HL). We hypothesized that COMT-LL women exposed actively or passively to tobacco smoke would have higher exposure to 2-hydroxylated estradiol than never-active/never passive exposed women, and should therefore have a lower risk of breast cancer than women exposed to tobacco smoke or with higher COMT activity. METHODS: We used a case-only design to evaluate departure from multiplicative interaction between COMT genotype and smoking status. We identified 502 cases of invasive incident breast cancer and characterized COMT genotype. Information on tobacco use and other potential breast cancer risk factors were obtained by structured interviews. RESULTS: We observed moderate departure from multiplicative interaction for COMT-HL genotype and history of ever-active smoking (adjusted odds ratio [aOR] = 1.6, 95% confidence interval [CI]: 0.7, 3.8) and more pronounced departure for women who smoked 40 or more years (aOR = 2.3, 95% CI: 0.8, 7.0). We observed considerable departure from multiplicative interaction for COMT-HL genotype and history of ever-passive smoking (aOR = 2.0, 95% CI: 0.8, 5.2) or for having lived with a smoker after age 20 (aOR = 2.8, 95% CI: 0.8, 10). CONCLUSION: With greater control over potential misclassification errors and a large case-only population, we found evidence to support an interaction between COMT genotype and tobacco smoke exposure in breast cancer etiology

    Digoxin treatment is associated with an increased incidence of breast cancer: a population-based case-control study

    Get PDF
    INTRODUCTION. Laboratory and epidemiologic studies have suggested a modifying effect of cardiac glycosides (for example, digoxin and digitoxin) on cancer risk. We explored the association between digoxin treatment and invasive breast cancer incidence among postmenopausal Danish women. METHODS. We used Danish registries to identify 5,565 postmenopausal women diagnosed with incident invasive breast carcinoma between 1 January 1991 and 31 December 2007, and 55,650 matched population controls. Cardiac glycoside prescriptions were ascertained from county prescription registries. All subjects had at least 2 years of recorded prescription drug and medical history data. We estimated the odds ratio associating digoxin use with breast cancer in conditional logistic regression models adjusted for age, county of residence, and use of anticoagulants, non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, and hormone replacement therapy. We also explored the impact of confounding by indication and detection bias. RESULTS. Digoxin was the sole cardiac glycoside prescribed to subjects during the study period. There were 324 breast cancer cases (5.8%) and 2,546 controls (4.6%) with a history of digoxin use at least 1 year before their index date (adjusted odds ratio (OR): 1.30; 95% confidence interval: 1.14 to 1.48). The breast cancer OR increased modestly with increasing duration of digoxin exposure (adjusted OR for 7 to 18 years of digoxin use: 1.39; 95% confidence interval: 1.10 to 1.74). The association was robust to adjustment for age, receipt of hormone replacement therapy, coprescribed drugs, and confounding by indication. A comparison of screening mammography rates between cases and controls showed no evidence of detection bias. CONCLUSIONS. Our results suggest that digoxin treatment increases the risk of invasive breast cancer among postmenopausal women.Congressionaly Directed Medical Research Programs (BC073012); Karen Elise Jensen Foundation; Western Danish Research Forum for Health Science
    corecore